

Year 12 Chemistry Curriculum Map

Chemistry is split into three branches which students will learn about more or less in parallel.

spectrometry relies on differing masses of atoms and is introduced as an analytic tool at this point. When chemists measure out an amount of a substance, they use an amount in moles. Year 12 students learn how to perform a range of mole calculations. The physical and chemical properties of compounds depend on the ways in which the compounds are held together by chemical bonds and by intermolecular forces. Theories of bonding explain how atoms or ions are held together in these structures. Materials scientists use knowledge of structure and bonding to engineer new materials with desirable properties. These new materials may offer new applications in a range of different modern technologies. The enthalpy change in a chemical reaction can be measured accurately, this is linked to ideas about bond energies and Hess cycles. The study of kinetics enables chemists to determine how a change in conditions affects the speed of a chemical reaction. In contrast with kinetics, a study of equilibria indicates how far reactions will go, what the yields will be and how these can be affected by conditions. Redox reactions involve a transfer of electrons from the reducing agent to the oxidising agent, students will learn how to represent this in balanced equations.

Year 12 Physical Chemistry begins with a more in depth look at the structure of the atom which affects the chemical properties of elements. Mass

Overview

In Inorganic Chemistry we start with the chemical and physical properties of period 3 elements, this is linked back to atomic structure. The focus then shifts to the Halogens and then the Alkali earth metals.

Year 12 Organic Chemistry begins with the correct naming and drawing of different organic molecules and then moves on to the idea of somerism. The first class of molecules studies is the alkanes followed by halogenoalkanes and alkenes. The study of alcohols builds upon the chemistry of the earlier molecules. The final topic of Analysis links together the earlier organic chemistry.

The Summer term finishes with an early start on the second year topics of Carbonyl Chemistry and Kinetics.

Year 12	Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
	Atomic Structure	Energetics	Intro to Organic	Haloalkanes	Alcohols Analysis	Nomenclature and Isomerism
Topic	Periodicity	Bonding	Alkanes	Alkenes	Group 2	Carbonyl Chemistry
	Amount of Substance		Kinetics	REDOX Halogens	Equilibrium	Kinetics 2
Knowledge	Fundamental particles Mass number and isotopes	Enthalpy change	Nomenclature	Free radical substitution	Alcohol production	Nomenclature
	Electron configuration	Calorimetry	Reaction mechanisms	Ozone decomposition	Oxidation of Alcohols	Optical isomerism

		Hess' Law	Isomerism	Nucleophilic substitution	Elimination	Aldehydes and ketones
	Classification of elements		.	-II		
	on the periodic table	Bond energies	Fractional distillation	Elimination	Test tube reactions to	Carboxylic acids and
	Physical properties of	Covalent, ionic and	Cracking	Structure, bonding and	identify functional groups	esters
	Period 3 elements	metallic bonding	Cracking	reactivity of alkenes	groups	Acylation mechanism
	T criou o cicinento	metame soriams	Combustion	reactivity of anteries	Mass spectrometry	neylation medianism
	Relative atomic mass and	Physical properties		Addition reactions	,	Rate equations
	relative molecular mass		Collision theory		Infrared Spectrometry	Arrhenius equation
		Shapes of molecules		Addition polymers		
	The mole and the		Maxwell -Boltzmann		The trends in the	
	Avogadro constant	Polarity and forces	F	Oxidation and Reduction	solubilities of the group 2	
	The ideal gas equation	between molecules	Factors affecting rate	REDOX equations	hydroxides and the sulfates, linked to uses	
	The lucal gas equation			NEDOX Equations	sunates, inikeu to uses	
	Empirical and molecular			Trends in properties of the	Chemical equilibria and	
	formula			Halogens	le Chatelier's principle	
	Balanced equations and			Uses of Chlorine	Equilibrium constant, kc	
	associated calculations					
	Use appropriate significant	Students could be	When given the	Carry out test-tube	Carry out the	Could be asked to
	figures	asked to find ΔH for a	structure of one isomer	hydrolysis of	preparation of a	recognise the presence
		reaction by calorimetry	be able to draw further	halogenoalkanes to show	carboxylic acid and	of a chiral centre in a
	Calculate weighted means,		isomers. Various	their relative rates of	aldehyde by the	given structure in 2D or
		Carry out Hess's law	representations could	reaction	oxidation of a primary	3D forms. They could
	Students interpret and	calculations	be used to give the opportunity to identify	Prepare a chloroalkane,	alcohol	also be asked to draw the 3D representation of
	analyse spectra	Find ΔH for a reaction	those that are isomeric	purifying the product	Carry out the	chiral centres in various
	Standard form	using Hess's law and	those that are isomeric	using a separating funnel	preparation of	species
		calorimetry, then	Investigate the effect	and distillation	cyclohexene from	'
	Calculated results can only	present data in	of temperature on the		cyclohexanol, including	Carry out test-tube
Skills	be reported to the limits of	appropriate ways	rate of reaction of	Investigate the role of	purification using a	reactions of Tollens'
	the least accurate	Final the August of	sodium thiosulfate and	chemists in the	separating funnel and by	reagent and Fehling's
	measurement	Find the type of	hydrochloric acid by an	introduction of legislation	distillation	solution to distinguish aldehydes and ketones
	Students construct and/or	structure of unknowns by experiment	initial rate method	to ban the use of CFCs and in finding replacements	Carry out test-tube	aluellydes alld ketolles
	balance equations using	a, experiment	Investigate the effect		reactions in the	Make esters by reacting
	ratios	Deduce the shape	of changing the	Test organic compounds	specification to	alcohols with carboxylic
		according to valence	concentration of acid	for unsaturation using	distinguish alcohols,	acids, purifying the
	Uncertainty	shell electron pair	on the rate of a	bromine water and record	aldehydes, alkenes and	product using a
		repulsion (VSEPR)	reaction of calcium	their observations	carboxylic acids	separating funnel and by
		principles	carbonate and hydrochloric acid by a	Investigate the treatment	Tosting for group 2 ions	distillation
			Hydrochionic acid by a	Investigate the treatment	Testing for group 2 ions	

	continuous monitoring method.	Combine half-equations to	as well as the solubility of the group 2 Hydroxides and Sulfates. Carry out test-tube equilibrium shifts to show the effect of concentration and temperature	Identify an ester by measuring its boiling point, followed by hydrolysis to form the carboxylic acid, which is purified by recrystallisation, and determine its melting point.
				Determine the order of reaction for a reactant in the iodine clock reaction